Prediction of Stock Market Price using Neural Network
نویسندگان
چکیده
منابع مشابه
Stock Price Prediction Using Quantum Neural Network
Quantum Neural Network (QNN) can improve upon the inadequacies of the classical neural network (CNN). The CNN requires a huge memory and needs more computational power. A new field of computation is emerging which integrates quantum computation with CNN. A quantum inspired hybrid model of quantum neurons and classical neurons is proposed. This paper details an approach, perhaps the first attemp...
متن کاملShort-term Prediction of Tehran Stock Exchange Price Index (TEPIX): Using Artificial Neural Network (ANN)
The main objective of this study is to find out whether an Artificial Neural Network (ANN) will be useful to predict stock market price, which is highly non-linear and uncertain. Specifically, this study will focus on forecasting TSE Price Index (TEPIX) as the most significant index of Iran Stock Market. Many data have been used as inputs to the network. These data are observations of 2000 day...
متن کاملStock market prediction using different neural network classification architectures
In recent years, many attempts have been made to predict the behavior of bonds, currencies, stocks, or stock markets. In this paper, the StandardlkPoors 500 Index is modeled using different neural network classification architectures. Most previous experiments used multilayer perceptrons for stock market forecasting. In this paper, a multilayer perceptron architecture and ZL probabilistic neura...
متن کاملStock Market Prediction using Feed-forward Artificial Neural Network
This paper presents computational approach for stock market prediction. Artificial Neural Network (ANN) forms a useful tool in predicting price movement of a particular stock. In the short term, the pricing relationship between the elements of a sector holds firmly. An ANN can learn this pricing relationship to high degree of accuracy and be deployed to generate profits with sufficiently large ...
متن کاملIndian Stock Market Prediction Using Differential Evolutionary Neural Network Model
This paper presents a scheme using Differential Evolution based Functional Link Artificial Neural Network (FLANN) to predict the Indian Stock Market Indices. The Model uses Back-Propagation (BP) algorithm and Differential Evolution (DE) algorithm respectively for predicting the Stock Price Indices for one day, one week, two weeks and one month in advance. The Indian stock prices i.e. BSE (Bomba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IJARCCE
سال: 2017
ISSN: 2278-1021
DOI: 10.17148/ijarcce.2017.6159